Chapter 16: Ratios and Graphs of Trigonometric Functions
Master trigonometric ratios, unit circle, and graphs of sine, cosine, and tangent functions.
Chapter 16: Ratios and Graphs of Trigonometric Functions
Overview
Welcome to Chapter 16 of Form 5 Mathematics! This chapter introduces you to the fascinating world of trigonometry and trigonometric functions. You'll learn about trigonometric ratios, the unit circle, and the graphs of sine, cosine, and tangent functions. These concepts are essential for understanding periodic phenomena, waves, oscillations, and have applications in physics, engineering, and many other fields.
What You'll Learn:
- Understand trigonometric ratios for angles 0° to 360°
- Use the unit circle to determine trigonometric values
- Sketch and analyze graphs of trigonometric functions
- Understand the effects of parameter changes on trigonometric graphs
Learning Objectives
After completing this chapter, you will be able to:
- Make and verify conjectures about sine, cosine, and tangent values of angles in quadrants II, III, and IV using corresponding reference angles
- Solve problems involving trigonometric ratios
- Sketch graphs of trigonometric functions
- Study and make generalizations about the effects of changing constants a, b, c in y = a sin(bx) + c, y = a cos(bx) + c, and y = a tan(bx) + c
- Solve problems involving these graphs
Unit Circle and Trigonometric Identities
Unit Circle Visualization
Basic Trigonometric Identities
Pythagorean Identity:
Reciprocal Identities:
Quotient Identity:
Co-function Identities:
Angle Sum and Difference Identities
Sum Identities:
Difference Identities:
Trigonometric Graph Analysis
Basic Function Graphs
Parameter Effects on Trigonometric Graphs
Amplitude Changes (a parameter)
Examples:
- y = 2 sin(x): Amplitude = 2 (stretched vertically)
- y = 0.5 cos(x): Amplitude = 0.5 (compressed vertically)
- y = -3 sin(x): Amplitude = 3, reflected over x-axis
Period Changes (b parameter)
Period Formulas:
- Sine/Cosine: Period =
- Tangent: Period =
Examples:
- y = sin(2x): Period = 180° (compressed horizontally)
- y = cos(0.5x): Period = 720° (stretched horizontally)
- y = tan(-3x): Period = 60°, reflected
Vertical Shift (c parameter)
Examples:
- y = sin(x) + 2: Shifted up by 2 units
- y = cos(x) - 1.5: Shifted down by 1.5 units
Combined Transformations
When multiple parameters are changed, apply transformations in this order:
- Horizontal scaling (b parameter)
- Horizontal shifting (phase shift)
- Vertical scaling (a parameter)
- Vertical shifting (c parameter)
Example: y = 2 sin(3x) + 1
Phase Shift and Horizontal Transformations
Phase Shift Formulas
For functions of the form:
- y = a sin(b(x - h)) + k
- y = a cos(b(x - h)) + k
- y = a tan(b(x - h)) + k
Phase Shift: h (horizontal shift)
- h > 0: Shift right
- h < 0: Shift left
Period: (sine/cosine), (tangent)
Phase Shift Examples
Example 1: y = 3 cos(2(x - 45°)) - 2
- Amplitude = 3
- Period = 360°/2 = 180°
- Phase shift = 45° right
- Vertical shift = 2 down
Example 2: y = 4 sin(0.5(x + 30°)) + 1
- Amplitude = 4
- Period = 360°/0.5 = 720°
- Phase shift = 30° left
- Vertical shift = 1 up
Special Angles and Exact Values
Common Angle Values
| Angle (degrees) | sin θ | cos θ | tan θ |
|---|---|---|---|
| 0° | 0 | 1 | 0 |
| 30° | 1/2 | √3/2 | 1/√3 |
| 45° | √2/2 | √2/2 | 1 |
| 60° | √3/2 | 1/2 | √3 |
| 90° | 1 | 0 | undefined |
| 180° | 0 | -1 | 0 |
| 270° | -1 | 0 | undefined |
| 360° | 0 | 1 | 0 |
Angle Relationships
Trigonometric Equation Solving
Basic Equation Types
Type 1: Single Function
Type 2: Multiple Angles
Type 3: Multiple Functions
Solving Strategies
Strategy 1: Reference Angle Method
Example: Solve 2 sin θ = √3 for 0° ≤ θ ≤ 360°
- Divide by 2: sin θ = √3/2
- Reference angle: θ = 60°
- Solutions in QI and QII: θ = 60°, 120°
Strategy 2: Factor and Solve
Example: Solve sin(2θ) - sin θ = 0 for 0° ≤ θ ≤ 360°
- Use double angle: 2 sin θ cos θ - sin θ = 0
- Factor: sin θ(2 cos θ - 1) = 0
- Solve: sin θ = 0 or cos θ = 1/2
- Solutions: θ = 0°, 180°, 60°, 300°
Strategy 3: Use Identities
Example: Solve si θ + sin θ - 2 = 0 for 0° ≤ θ ≤ 360°
- Let x = sin θ: + x - 2 = 0
- Factor: (x + 2)(x - 1) = 0
- Solve: x = -2 or x = 1
- Only x = 1 valid: sin θ = 1
- Solution: θ = 90°
Real-world Wave Applications
Simple Harmonic Motion
General Equation: y = A sin(ωt + φ) + D
Where:
- A = Amplitude
- ω = Angular frequency (2πf)
- t = Time
- φ = Phase angle
- D = Equilibrium position
Example: Spring-mass system
- Spring constant k, mass m
- Frequency f =
- Period T =
Wave Applications
Engineering Applications
Resonance Frequency:
Impedance in AC Circuits:
Power in AC Circuits:
Advanced Graph Analysis
Graph Transformations Summary
| Parameter | Effect | Example |
|---|---|---|
| a (amplitude) | Vertical scaling | y = 2 sin(x) → amplitude 2 |
| b (frequency) | Period change | y = sin(3x) → period 120° |
| h (phase shift) | Horizontal shift | y = sin(x - 45°) → shift right |
| k (vertical shift) | Vertical shift | y = sin(x) + 2 → shift up 2 |
Composite Functions
Example: y = 3 sin(2(x - 30°)) + 1
- Start with y = sin(x)
- Horizontal compression by 2: y = sin(2x), period = 180°
- Horizontal shift right 30°: y = sin(2(x - 30°))
- Vertical stretch by 3: y = 3 sin(2(x - 30°)), amplitude = 3
- Vertical shift up 1: y = 3 sin(2(x - 30°)) + 1
Graph Sketching Steps
- Identify parameters: a, b, h, k
- Calculate properties: amplitude, period, phase shift, vertical shift
- Find key points: zeros, maxima, minima, asymptotes
- Sketch one period: Mark key points and smooth curves
- Repeat pattern: Extend graph periodically
- Label axes: Show scale and important values
Trigonometric Ratios
For any angle θ in standard position:
Where (x,y) is a point on the terminal side and r = √( + ).
Signs in Different Quadrants
| Quadrant | sin θ | cos θ | tan θ |
|---|---|---|---|
| I (0-90°) | + | + | + |
| II (90-180°) | + | - | - |
| III (180-270°) | - | - | + |
| IV (270-360°) | - | + | - |
Reference Angle Method
To find trigonometric values for any angle θ:
- Find reference angle α
- Find trigonometric value for α
- Apply correct sign based on quadrant
Example: sin 150°
- Reference angle: 180° - 150° = 30°
- sin 30° = 0.5
- Quadrant II: sin positive
- sin 150° = +0.5
Graph Parameters
For y = a sin(bx) + c, y = a cos(bx) + c, y = a tan(bx) + c:
- Amplitude: |a| (for sine and cosine)
- Period: 360°/|b| (for sine and cosine), 180°/|b| (for tangent)
- Vertical Shift: c
- Phase Shift: Additional horizontal shift if present
Key Concepts
Unit Circle
The unit circle is a circle with radius 1 unit centered at the origin. Points on the circle have coordinates (cos θ, sin θ) where θ is the angle from the positive x-axis.
Key Properties:
- Radius = 1
- Center at origin (0,0)
- θ measured counterclockwise from positive x-axis
- Coordinates: (cos θ, sin θ)
Quadrants
The Cartesian plane is divided into four quadrants:
- Quadrant I: 0° to 90° (All trigonometric ratios positive)
- Quadrant II: 90° to 180° (Sine positive, cosine and tangent negative)
- Quadrant III: 180° to 270° (Tangent positive, sine and cosine negative)
- Quadrant IV: 270° to 360° (Cosine positive, sine and tangent negative)
Mnemonic: "All Students Take Calculus"
- All (Quadrant I): All positive
- Students (Quadrant II): Sine positive
- Take (Quadrant III): Tangent positive
- Calculus (Quadrant IV): Cosine positive
Reference Angle
The reference angle α is the acute angle made by the terminal side of angle θ with the x-axis.
Reference Angle by Quadrant:
- Quadrant I: α = θ
- Quadrant II: α = 180° - θ
- Quadrant III: α = θ - 180°
- Quadrant IV: α = 360° - θ
Trigonometric Graphs
Basic Graph Shapes:
- Sine: y = sin x - Waveform starting at origin
- Cosine: y = cos x - Waveform starting at maximum
- Tangent: y = tan x - Periodic with vertical asymptotes
Key Parameters:
- Amplitude: |a| - Maximum displacement from center line
- Period: 360°/|b| - Length of one complete cycle
- Vertical Shift: c - Up/down shift of entire graph
Important Formulas and Methods
Trigonometric Ratios
For any angle θ in standard position:
Where (x,y) is a point on the terminal side and r = √( + ).
Signs in Different Quadrants
| Quadrant | sin θ | cos θ | tan θ |
|---|---|---|---|
| I (0-90°) | + | + | + |
| II (90-180°) | + | - | - |
| III (180-270°) | - | - | + |
| IV (270-360°) | - | + | - |
Reference Angle Method
To find trigonometric values for any angle θ:
- Find reference angle α
- Find trigonometric value for α
- Apply correct sign based on quadrant
Example: sin 150°
- Reference angle: 180° - 150° = 30°
- sin 30° = 0.5
- Quadrant II: sin positive
- sin 150° = +0.5
Graph Parameters
For y = a sin(bx) + c, y = a cos(bx) + c, y = a tan(bx) + c:
- Amplitude: |a| (for sine and cosine)
- Period: 360°/|b| (for sine and cosine), 180°/|b| (for tangent)
- Vertical Shift: c
- Phase Shift: Additional horizontal shift if present
Step-by-Step Solved Examples
Example 1: Trigonometric Values Using Reference Angles
Problem: Find the exact values: a) sin 135° b) cos 210° c) tan 315°
Solution: a) sin 135°:
- 135° in Quadrant II
- Reference angle: 180° - 135° = 45°
- sin 45° = √2/2
- Quadrant II: sin positive
- sin 135° = +√2/2
b) cos 210°:
- 210° in Quadrant III
- Reference angle: 210° - 180° = 30°
- cos 30° = √3/2
- Quadrant III: cos negative
- cos 210° = -√3/2
c) tan 315°:
- 315° in Quadrant IV
- Reference angle: 360° - 315° = 45°
- tan 45° = 1
- Quadrant IV: tan negative
- tan 315° = -1
Answer: a) √2/2, b) -√3/2, c) -1
Example 2: Graph Sketching - Sine Function
Problem: Sketch the graph of y = 2 sin(3x) + 1
Solution: Step 1: Identify parameters
- a = 2, b = 3, c = 1
- Amplitude = |2| = 2
- Period = 360°/|3| = 120°
- Vertical shift = 1
- Range: [1-2, 1+2] = [-1, 3]
Step 2: Key points for one period (0° to 120°):
- x = 0°: y = 2 sin(0) + 1 = 1
- x = 30°: y = 2 sin(90°) + 1 = 2(1) + 1 = 3
- x = 60°: y = 2 sin(180°) + 1 = 2(0) + 1 = 1
- x = 90°: y = 2 sin(270°) + 1 = 2(-1) + 1 = -1
- x = 120°: y = 2 sin(360°) + 1 = 2(0) + 1 = 1
Step 3: Plot and repeat pattern
Answer: Graph with amplitude 2, period 120°, shifted up by 1 unit
Example 3: Graph Sketching - Cosine Function
Problem: Sketch y = 3 cos(2x) - 2
Solution: Step 1: Identify parameters
- a = 3, b = 2, c = -2
- Amplitude = |3| = 3
- Period = 360°/|2| = 180°
- Vertical shift = -2
- Range: [-2-3, -2+3] = [-5, 1]
Step 2: Key points for one period (0° to 180°):
- x = 0°: y = 3 cos(0°) - 2 = 3(1) - 2 = 1
- x = 45°: y = 3 cos(90°) - 2 = 3(0) - 2 = -2
- x = 90°: y = 3 cos(180°) - 2 = 3(-1) - 2 = -5
- x = 135°: y = 3 cos(270°) - 2 = 3(0) - 2 = -2
- x = 180°: y = 3 cos(360°) - 2 = 3(1) - 2 = 1
Step 3: Plot and repeat pattern
Answer: Graph with amplitude 3, period 180°, shifted down by 2 units
Example 4: Tangent Function Analysis
Problem: Analyze y = 4 tan(0.5x)
Solution: Step 1: Identify parameters
- a = 4, b = 0.5, c = 0
- Amplitude: Not defined for tangent
- Period = 180°/|0.5| = 360°
- Vertical shift: 0
- Range: All real numbers
Step 2: Find asymptotes: tan(0.5x) undefined when 0.5x = 90° + 180°n x = 180° + 360°n
Step 3: Key points for one period:
- x = 0°: y = 4 tan(0°) = 0
- x = 90°: y = 4 tan(45°) = 4(1) = 4
- x = 180°: undefined (asymptote)
- x = 270°: y = 4 tan(135°) = 4(-1) = -4
- x = 360°: y = 4 tan(180°) = 0
Answer: Tangent graph with period 360°, vertical stretch by 4, asymptotes at x = 180° + 360°n
Example 5: Real-world Application - Wave Motion
Problem: A wave is described by y = 5 sin(2πt) where y is displacement in cm and t is time in seconds. Find: a) Amplitude and period b) Displacement at t = 0.25 seconds c) Time when displacement is maximum
Solution: a) Amplitude and Period: y = 5 sin(2πt)
- Amplitude = 5 cm
- Period = 2π/|2π| = 1 second
b) Displacement at t = 0.25: y = 5 sin(2π × 0.25) = 5 sin(π/2) = 5(1) = 5 cm
c) Maximum displacement: Maximum occurs when sin(2πt) = 1 2πt = π/2 + 2πn t = 0.25 + n seconds (where n is integer)
Answer: a) Amplitude 5 cm, period 1 second; b) 5 cm; c) t = 0.25 + n seconds
Real-world Applications
1. Physics and Engineering
- Wave Motion: Sound waves, light waves, water waves
- Simple Harmonic Motion: Pendulums, springs, oscillations
- AC Circuits: Voltage and current variations over time
2. Architecture and Construction
- Roof Design: Trigonometric calculations for angles
- Structural Analysis: Periodic loading calculations
- Vibrations: Building response to earthquakes and wind
3. Navigation and Surveying
- Position Calculations: GPS and coordinate systems
- Surveying: Land measurement and angle calculations
- Astronomy: Celestial navigation and position tracking
4. Music and Acoustics
- Sound Waves: Frequency and amplitude relationships
- Musical Notes: Trigonometric functions for sound waves
- Audio Processing: Signal analysis and filtering
Important Terms
| Term | Definition | Example |
|---|---|---|
| Unit Circle | Circle with radius 1 centered at origin | (cos θ, sin θ) coordinates |
| Reference Angle | Acute angle with x-axis | 30° for 150°, 210°, 330° |
| Quadrant | One of four regions of Cartesian plane | I: 0-90°, II: 90-180°, etc. |
| Amplitude | Maximum displacement from center | |
| Period | Length of one complete cycle | 360°/ |
| Vertical Shift | Up/down translation of graph | c in y = a sin(bx) + c |
| Asymptote | Line graph approaches but never reaches | x = 90° + 180°n for tan x |
| Periodic Function | Function repeats at regular intervals | sin x repeats every 360° |
| Sine Wave | Smooth oscillating curve | y = sin x |
| Cosine Wave | Shifted sine wave | y = cos x = sin(x + 90°) |
Summary Points
- Unit Circle: Provides (cos θ, sin θ) coordinates for all angles
- Quadrant Signs: "All Students Take Calculus" for trig signs
- Reference Angles: Help find trig values for any angle
- Graph Parameters:
- Amplitude: |a| - Maximum displacement
- Period: 360°/|b| - One complete cycle
- Vertical Shift: c - Up/down movement
- Sine: Starts at (0,0), smooth wave
- Cosine: Starts at maximum, smooth wave
- Tangent: Has asymptotes, periodic with period 180°/|b|
Practice Tips for SPM Students
1. Master Reference Angles
- Practice finding reference angles for all quadrants
- Memorize trig values for common angles (0°, 30°, 45°, 60°, 90°)
- Learn to apply correct signs based on quadrants
2. Graph Sketching
- Practice sketching basic sine, cosine, and tangent graphs
- Understand parameter effects (a, b, c) on graphs
- Learn to identify key points and asymptotes
3. Real-world Applications
- Relate trigonometric functions to wave motion
- Practice physics and engineering applications
- Understand periodic phenomena in everyday life
4. Common Mistakes to Avoid
- Confusing period calculations for different functions
- Incorrect sign application in different quadrants
- Misidentifying amplitude and vertical shift
- Forgetting tangent has undefined values
SPM Exam Tips
Paper 1 (Multiple Choice)
- Look for angle quadrant relationships
- Remember reference angle methods
- Practice quick graph parameter identification
- Use elimination method for difficult questions
Paper 2 (Structured)
- Show all reference angle calculations
- Demonstrate graph sketching steps
- Explain parameter effects clearly
- Use proper mathematical notation throughout
Did You Know? Trigonometry originated from ancient civilizations' need for astronomy and navigation. The word "trigonometry" comes from Greek words meaning "triangle measurement." Today, it's essential for everything from GPS navigation to music production and computer graphics!
Next Chapter: In Chapter 7, you'll explore measures of dispersion for grouped data, building on your statistics knowledge from Form 4 but applying it to categorized data.