SPM Wiki

SPM WikiChemistryChapter 3: Mole Concept, Chemical Formula and Equation

Chapter 3: Mole Concept, Chemical Formula and Equation

Master the fundamental mole concept, understand chemical formulas and equations with comprehensive examples and calculations for SPM Chemistry success.

Chapter 3: Mole Concept, Chemical Formula and Equation

Overview

The mole concept is one of the most fundamental and important topics in chemistry. It provides a bridge between the microscopic world of atoms and molecules and the macroscopic world we can measure in the laboratory. This chapter will guide you through understanding relative atomic and molecular masses, the mole concept itself, chemical formulas, and chemical equations. These concepts are essential for quantitative chemistry and will be used throughout your SPM Chemistry studies.

Learning Objectives

After studying this chapter, you should be able to:

  • Calculate relative atomic mass and relative molecular mass
  • Understand the mole concept and Avogadro's number
  • Write and interpret chemical formulas
  • Balance and interpret chemical equations
  • Perform stoichiometric calculations
  • Apply mole concept in practical laboratory situations

3.1 Relative Atomic Mass and Relative Molecular Mass

Understanding Atomic Mass Scale

Atomic masses are extremely small when expressed in grams, so we use a relative scale:

Carbon-12 Standard

  • Definition: One atom of carbon-12 is assigned exactly 12 atomic mass units (amu)
  • Purpose: Provides a standard reference for measuring atomic masses
  • Conversion: 1 amu = 1.66054 × 10⁻²⁴ grams

Relative Atomic Mass (Ar)

Definition: The average mass of an atom of an element compared to 1/12 the mass of a carbon-12 atom.

Calculation Method

For elements with isotopes:

Ar=(Isotope Mass×Natural Abundance)A_r = \sum (\text{Isotope Mass} \times \text{Natural Abundance})

Example: Chlorine

  • Chlorine-35: 34.97 amu, 75.77% abundance
  • Chlorine-37: 36.97 amu, 24.23% abundance
  • ArA_r = (34.97 × 0.7577) + (36.97 × 0.2423) = 35.45 amu

Common Relative Atomic Masses

ElementSymbolRelative Atomic Mass
HydrogenH1.008
CarbonC12.01
NitrogenN14.01
OxygenO16.00
SodiumNa22.99
MagnesiumMg24.31
ChlorineCl35.45
IronFe55.85
CopperCu63.55
SilverAg107.87
GoldAu196.97
LeadPb207.2

Relative Molecular Mass (Mr)

Definition: The sum of the relative atomic masses of all atoms in a molecule.

Calculation Formula

Mr=(Number of atoms×Relative atomic mass)M_r = \sum (\text{Number of atoms} \times \text{Relative atomic mass})

Examples

CompoundFormulaCalculationMr
WaterH2O\text{H}_2\text{O}(2 × 1.008) + (1 × 16.00)18.02
Carbon dioxideCO2\text{CO}_2(1 × 12.01) + (2 × 16.00)44.01
Sodium chlorideNaCl\text{NaCl}(1 × 22.99) + (1 × 35.45)58.44
MethaneCH4\text{CH}_4(1 × 12.01) + (4 × 1.008)16.04
GlucoseC6H12O6\text{C}_6\text{H}_{12}\text{O}_6(6 × 12.01) + (12 × 1.008) + (6 × 16.00)180.16

Complex Compounds

For ionic compounds and complex molecules:

CompoundFormulaCalculationMr
Sulfuric acidH2SO4\text{H}_2\text{SO}_4(2 × 1.008) + (1 × 32.07) + (4 × 16.00)98.09
Calcium carbonateCaCO3\text{CaCO}_3(1 × 40.08) + (1 × 12.01) + (3 × 16.00)100.09
Ammonium sulfate(NH4)2SO4(\text{NH}_4)_2\text{SO}_42(14.01 + 4×1.008) + 32.07 + 4(16.00)132.14

Key Terms

  • Relative Atomic Mass: Average mass of atoms compared to carbon-12
  • Relative Molecular Mass: Sum of relative atomic masses in a molecule
  • Atomic Mass Unit (amu): Unit of mass based on carbon-12 standard
  • Isotope: Atoms of same element with different masses

Did You Know?

If you had one mole of dollar bills and stacked them up, the pile would reach from the Earth to the Sun and back over 500 times! A mole represents 6.022 × 10²³ particles, an incredibly large number that makes the mole concept essential for working with atoms and molecules.

3.2 Mole Concept

What is a Mole?

Definition: A mole is the amount of substance that contains as many elementary entities (atoms, molecules, ions, or other particles) as there are atoms in exactly 12 grams of carbon-12.

Avogadro's Number

NA=6.022×1023 particles/molN_A = 6.022 \times 10^{23} \text{ particles/mol}

Significance: This is the number of particles in one mole of any substance.

Molar Mass

Definition: The mass of one mole of a substance, expressed in grams per mole (g/mol).

Relationship

  • Molar mass in g/mol = Relative molecular/atomic mass in amu
  • Example: Water has Mr = 18.02, so molar mass = 18.02 g/mol

Examples

SubstanceFormulaMolar Mass (g/mol)
HydrogenH1.008
OxygenO2O_232.00
WaterH2H_2O18.02
Carbon dioxideCO2O_244.01
Sodium chlorideNaCl58.44
GlucoseC6H12O6C_6H_{12}O_6180.16

Calculations Using Moles

Number of Particles

Number of particles=Number of moles×NA\text{Number of particles} = \text{Number of moles} \times N_A

Example: How many molecules are in 2 moles of water?

2 mol×6.022×1023 molecules/mol=1.204×1024 molecules2 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} = 1.204 \times 10^{24} \text{ molecules}

Mass to Moles Conversion

Number of moles=Mass (g)Molar mass (g/mol)\text{Number of moles} = \frac{\text{Mass (g)}}{\text{Molar mass (g/mol)}}

Example: How many moles are in 36.04 g of water?

Moles=36.04 g18.02 g/mol=2 mol\text{Moles} = \frac{36.04 \text{ g}}{18.02 \text{ g/mol}} = 2 \text{ mol}

Moles to Mass Conversion

Mass (g)=Number of moles×Molar mass (g/mol)\text{Mass (g)} = \text{Number of moles} \times \text{Molar mass (g/mol)}

Example: What is the mass of 0.5 moles of sodium chloride?

Mass=0.5 mol×58.44 g/mol=29.22 g\text{Mass} = 0.5 \text{ mol} \times 58.44 \text{ g/mol} = 29.22 \text{ g}

Volume of Gases (STP)

Standard Temperature and Pressure (STP):

  • Temperature = 0°C (273 K)
  • Pressure = 1 atm (101.3 kPa)

Molar Volume at STP: 22.4 L/mol

Volume (L)=Number of moles×22.4 L/mol\text{Volume (L)} = \text{Number of moles} \times 22.4 \text{ L/mol}

Example: What is the volume of 3 moles of oxygen gas at STP?

Volume=3 mol×22.4 L/mol=67.2 L\text{Volume} = 3 \text{ mol} \times 22.4 \text{ L/mol} = 67.2 \text{ L}

Mole Calculations Summary

Given RequiredFormula
Mass → Molesn=mMn = \frac{m}{M}
Moles → Massm=n×Mm = n \times M
Moles → ParticlesN=n×NAN = n \times N_A
Particles → Molesn=NNAn = \frac{N}{N_A}
Moles → Volume (gas)V=n×22.4V = n \times 22.4

Key Terms

  • Mole: Amount of substance containing 6.022 × 10²³ particles
  • Molar Mass: Mass of one mole of substance (g/mol)
  • Avogadro's Number: 6.022 × 10²³ particles/mol
  • STP: Standard Temperature and Pressure (0°C, 1 atm)

SPM Exam Tips

When doing mole calculations:

  • Always write down the formula before plugging in numbers
  • Pay attention to units and convert if necessary
  • For gas calculations, remember STP conditions
  • Double-check significant figures in your final answer

3.3 Chemical Formulas

Types of Chemical Formulas

Empirical Formula

  • Shows the simplest whole-number ratio of atoms in a compound
  • Example: CH3O\text{CH}_3\text{O} for glucose (instead of C6H12O6\text{C}_6\text{H}_{12}\text{O}_6)

Molecular Formula

  • Shows the actual number of atoms in a molecule
  • Example: C6H12O6\text{C}_6\text{H}_{12}\text{O}_6 for glucose

Structural Formula

  • Shows how atoms are connected in a molecule
  • Example: H-O-H for water

Writing Chemical Formulas

Rules for Writing Formulas

  1. Determine the ions involved
  2. Use charges to balance the formula
  3. Write the positive ion first
  4. Use subscripts to show the ratio

Common Ions

Positive Ions (Cations)Negative Ions (Anions)Formula Examples
Na⁺ (sodium)Cl⁻ (chloride)NaCl\text{NaCl}
K⁺ (potassium)O2O^2⁻ (oxide)K2O\text{K}_2\text{O}
Mg2g^2⁺ (magnesium)S2S^2⁻ (sulfide)MgS\text{MgS}
Al3l^3⁺ (aluminum)NO3\text{NO}_3^− (nitrate)NO3\text{NO}_3
Fe2e^2⁺ (iron(II))SO42\text{SO}_4^{2−} (sulfate)FeSO4\text{FeSO}_4
Fe3e^3⁺ (iron(III))PO43\text{PO}_4^{3−} (phosphate)FePO4\text{FePO}_4

Writing Ionic Formulas

Method: Cross-multiply the charges (ignore signs)

Example: Aluminum oxide (Al3+\text{Al}^{3+}, O2\text{O}^{2−})

  1. Write charges: Al3+\text{Al}^{3+} O2\text{O}^{2−}
  2. Cross-multiply: Al2O3\text{Al}_2\text{O}_3
  3. Check balance: (+3)×2 + (-2)×3 = 0

Examples

CompoundIonsFormulaCalculation
Sodium sulfideNa⁺, S2S^2Na2S\text{Na}_2\text{S}Na2S\text{Na}_2\text{S}
Magnesium nitrateMg2g^2⁺, NO3\text{NO}_3^−Mg(NO3)2\text{Mg(NO}_3\text{)}_2Mg(NO3)2\text{Mg(NO}_3\text{)}_2
Aluminum phosphateAl3+\text{Al}^{3+}, PO43\text{PO}_4^{3−}AlPO4\text{AlPO}_4AlPO4\text{AlPO}_4
Iron(III) chlorideFe3e^3⁺, Cl⁻FeCl3\text{FeCl}_3FeCl3\text{FeCl}_3

Molecular Compounds

Covalent Compounds

  • Formed by sharing electrons between nonmetals
  • Use prefixes to indicate number of atoms

Prefixes:

  • 1: mono-
  • 2: di-
  • 3: tri-
  • 4: tetra-
  • 5: penta-
  • 6: hexa-

Examples

NameFormulaPrefix System
Carbon monoxideCO\text{CO}mono + carbon + oxide
Carbon dioxideCO2\text{CO}_2di + carbon + oxide
Dinitrogen trioxideN2O3\text{N}_2\text{O}_3di + nitrogen + tri + oxide
Phosphorus pentoxideP4O10\text{P}_4\text{O}_{10}tetra + phosphorus + deca + oxide

Balancing Chemical Formulas

Rules

  1. Count atoms of each element on both sides
  2. Use coefficients to balance (never change subscripts)
  3. Start with the most complex molecule
  4. Save elements that appear in one compound for last

Common Mistakes to Avoid

  • ❌ Changing subscripts (this changes the compound)
  • ❌ Forgetting to count polyatomic ions as a group
  • ❌ Not checking the final balance

Did You Know?

Water (H2H_2O) is one of the few compounds where the molecular formula is the same as the empirical formula. Most compounds have different molecular and empirical formulas because their atoms combine in specific ratios that can be simplified.

3.4 Chemical Equations

Parts of a Chemical Equation

ReactantsProducts\text{Reactants} \rightarrow \text{Products} 2H2+O22H2O2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}

Components

  • Reactants: Substances on the left (before arrow)
  • Products: Substances on the right (after arrow)
  • Coefficients: Numbers in front of formulas
  • States: (s) solid, (l) liquid, (g) gas, (aq) aqueous

Balancing Chemical Equations

Step-by-Step Method

  1. Write the unbalanced equation
  2. Count atoms of each element
  3. Balance elements one at a time
  4. Use coefficients, not subscripts
  5. Check final balance

Examples

Example 1: Hydrogen + Oxygen → Water

  1. Unbalanced: H2+O2H2O\text{H}_2 + \text{O}_2 \rightarrow \text{H}_2\text{O}
  2. Count: H: 2 → 2, O: 2 → 1
  3. Balance O: H2+O22H2O\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}
  4. Balance H: 2H2+O22H2O2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}
  5. Check: H: 4 → 4, O: 2 → 2 ✓

Example 2: Methane + Oxygen → Carbon dioxide + Water

  1. Unbalanced: CH4+O2CO2+H2O\text{CH}_4 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O}
  2. Count: C: 1 → 1, H: 4 → 2, O: 2 → 3
  3. Balance H: CH4+O2CO2+2H2O\text{CH}_4 + \text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}
  4. Balance O: CH4+2O2CO2+2H2O\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}
  5. Check: C: 1 → 1, H: 4 → 4, O: 4 → 4 ✓

Complex Equations

Example 3: Iron oxide + Carbon → Iron + Carbon dioxide

  1. Unbalanced: Fe2O3+CFe+CO2\text{Fe}_2\text{O}_3 + \text{C} \rightarrow \text{Fe} + \text{CO}_2
  2. Count: Fe: 2 → 1, O: 3 → 2, C: 1 → 1
  3. Balance Fe: Fe2O3+C2Fe+CO2\text{Fe}_2\text{O}_3 + \text{C} \rightarrow 2\text{Fe} + \text{CO}_2
  4. Balance C: Fe2O3+3C2Fe+3CO2\text{Fe}_2\text{O}_3 + 3\text{C} \rightarrow 2\text{Fe} + 3\text{CO}_2
  5. Check: Fe: 2 → 2, O: 3 → 6, C: 3 → 6 ✓

Types of Chemical Reactions

Synthesis/Combination

2Mg+O22MgO2\text{Mg} + \text{O}_2 \rightarrow 2\text{MgO}

Decomposition

2HgO2Hg+O22\text{HgO} \rightarrow 2\text{Hg} + \text{O}_2

Single Replacement

Zn+2HClZnCl2+H2\text{Zn} + 2\text{HCl} \rightarrow \text{ZnCl}_2 + \text{H}_2

Double Replacement

AgNO3+NaClAgCl+NaNO3\text{AgNO}_3 + \text{NaCl} \rightarrow \text{AgCl} + \text{NaNO}_3

Combustion

CH4+2O2CO2+2H2O\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}

Stoichiometric Calculations

Mole-Mole Relationships

From balanced equation: 2H2+O22H2O2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}

  • 2 mol H2H_2 reacts with 1 mol O2O_2 to produce 2 mol H2H_2O

Mole Ratio Method

Moles of A×Coefficient of BCoefficient of A=Moles of B\text{Moles of A} \times \frac{\text{Coefficient of B}}{\text{Coefficient of A}} = \text{Moles of B}

Example: How many moles of water are produced from 3 moles of hydrogen?

3 mol H2×2 mol H2O2 mol H2=3 mol H2O3 \text{ mol H}_2 \times \frac{2 \text{ mol H}_2\text{O}}{2 \text{ mol H}_2} = 3 \text{ mol H}_2\text{O}

Mass-Mass Calculations

Mass AMoles AMoles BMass B\text{Mass A} \rightarrow \text{Moles A} \rightarrow \text{Moles B} \rightarrow \text{Mass B}

Example: How many grams of water are produced from 6 g of hydrogen?

6 g H2×1 mol H22 g H2×2 mol H2O2 mol H2×18 g H2O1 mol H2O=54 g H2O6 \text{ g H}_2 \times \frac{1 \text{ mol H}_2}{2 \text{ g H}_2} \times \frac{2 \text{ mol H}_2\text{O}}{2 \text{ mol H}_2} \times \frac{18 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}} = 54 \text{ g H}_2\text{O}

SPM Exam Tips

For balancing equations:

  • Always start with the most complex compound
  • Balance metals first, then nonmetals, then hydrogen/oxygen
  • Check your final answer by counting all atoms
  • Practice with various reaction types regularly

Laboratory Practical Exercise: Mole Concept Applications

Objective

To apply mole concept in laboratory calculations and preparations.

Materials Needed

  • Balance (0.01 g precision)
  • Various chemicals (NaCl, CuSO4O_4, etc.)
  • Measuring cylinders
  • Safety equipment

Procedures

Exercise 1: Preparing Solutions

  1. Calculate mass needed for 0.1 mol NaCl
  2. Weigh and dissolve in 100 mL water
  3. Verify concentration

Exercise 2: Reaction Stoichiometry

  1. React known mass of magnesium with hydrochloric acid
  2. Measure volume of hydrogen gas produced
  3. Compare with theoretical yield

Expected Outcomes

  • Skill in mole-mass conversions
  • Understanding of reaction stoichiometry
  • Accuracy in laboratory measurements

Summary

This chapter has covered the essential mole concept and chemical calculations:

  1. Relative Masses: Understanding atomic and molecular masses
  2. Mole Concept: The mole as a counting unit for atoms/molecules
  3. Chemical Formulas: Writing and interpreting compound formulas
  4. Chemical Equations: Balancing and interpreting reactions
  5. Stoichiometry: Quantitative relationships in chemical reactions

Mastering these concepts is crucial for success in SPM Chemistry and for understanding quantitative chemistry throughout your studies.


Practice Tips for SPM Students

  • Create a mole calculation formula sheet
  • Practice balancing equations daily
  • Memorize common ions and their charges
  • Work through stoichiometry problems step by step
  • Review laboratory applications of mole concept