SPM Wiki

SPM WikiChemistryChapter 6: Acid, Base and Salt

Chapter 6: Acid, Base and Salt

Master the fundamental concepts of acids, bases, and salts including pH calculations, titration techniques, salt formation, and qualitative analysis methods.

Chapter 6: Acid, Base and Salt

Overview

Acids, bases, and salts are fundamental concepts in chemistry that explain countless chemical reactions and processes in our daily lives. From the acids in our stomach that help digest food to the bases that clean our homes, and the salts that flavor our food, these substances play crucial roles in nature and industry. This chapter will guide you through the properties, reactions, and applications of acids, bases, and salts, including pH calculations, titration techniques, and qualitative analysis methods essential for SPM Chemistry success.

Learning Objectives

After studying this chapter, you should be able to:

  • Define acids and bases using different theories
  • Calculate pH and understand its significance
  • Distinguish between strong and weak acids/bases
  • Perform acid-base titration calculations
  • Prepare and identify various salts
  • Conduct qualitative analysis of salts
  • Apply acid-base concepts to real-world situations

6.1 The Role of Water in Showing Acidity and Alkalinity

Water as a Solvent

Water is called the "universal solvent" because it dissolves many ionic and polar compounds. In water, acids, bases, and salts dissociate into ions, making the solutions electrically conductive.

Ionization in Water

Acids in Water: Produce H+H^+ ions (or H3O+H_3O^+ hydronium ions) HCl+H2OH3O++Cl\text{HCl} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{Cl}^-

Bases in Water: Produce OHOH^- ions NaOHNa++OH\text{NaOH} \rightarrow \text{Na}^+ + \text{OH}^-

Salts in Water: Produce both cations and anions NaClNa++Cl\text{NaCl} \rightarrow \text{Na}^+ + \text{Cl}^-

Self-Ionization of Water

Water undergoes self-ionization: H2OH++OH\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^-

Ion Product Constant: Kw=[H+][OH]=1.0×1014K_w = [\text{H}^+][\text{OH}^-] = 1.0 \times 10^{-14} at 25°C

Neutral Solution

In neutral water: [H+]=[OH]=1.0×107 M[\text{H}^+] = [\text{OH}^-] = 1.0 \times 10^{-7} \text{ M}


Did You Know?

Pure water is actually slightly acidic due to dissolved carbon dioxide from the air, which forms carbonic acid. This is why even "pure" water has a pH of about 5.6 rather than exactly 7.0.

6.2 pH Value

Definition of pH

pH: Negative logarithm of the hydrogen ion concentration pH=ilog10[H+]\text{pH} =i -\log_{10} [\text{H}^+]

pH Scale

pH ValueSolution Type[H⁺] (M)[OH⁻] (M)Examples
0-3Strongly acidic10010^{-0} to 10310^{-3}101410^{-14} to 101110^{-11}HCl, H2SO4H_2SO_4
4-6Weakly acidic10410^{-4} to 10610^{-6}101010^{-10} to 10810^{-8}Lemon juice, vinegar
7Neutral1.0×1071.0 \times 10^{-7}1.0×1071.0 \times 10^{-7}Pure water
8-10Weakly basic10810^{-8} to 101010^{-10}10610^{-6} to 10410^{-4}Sea water, soap
11-14Strongly basic101110^{-11} to 101410^{-14}10310^{-3} to 10010^{0}NaOH, bleach

pH Calculations

From [H⁺] to pH

Example: If [H+]=1.0×103[H^+] = 1.0 \times 10^{-3} M pH=log10(1.0×103)=3.0\text{pH} = -\log_{10} (1.0 \times 10^{-3}) = 3.0

From pH to [H⁺]

Example: If pH = 2.5 [H+]=10pH=102.5=3.16×103 M[\text{H}^+] = 10^{-\text{pH}} = 10^{-2.5} = 3.16 \times 10^{-3} \text{ M}

Relationship between pH and pOH

pH+pOH=14(at 25°C)\text{pH} + \text{pOH} = 14 \quad (\text{at } 25°C)

pOH=log10[OH]\text{pOH} = -\log_{10} [\text{OH}^-]

Common pH Values

SubstancepHApproximate [H⁺] (M)
Battery acid01
Gastric acid1.5-3.53.2×1023.2 \times 10^{-2} to 3.2×1043.2 \times 10^{-4}
Lemon juice2-310210^{-2} to 10310^{-3}
Vinegar2.5-3.53.2×1033.2 \times 10^{-3} to 3.2×1043.2 \times 10^{-4}
Black coffee510510^{-5}
Milk6.5-6.72×1072 \times 10^{-7} to 2×1072 \times 10^{-7}
Pure water71×1071 \times 10^{-7}
Sea water810810^{-8}
Soap9-1010910^{-9} to 101010^{-10}
Household ammonia11-12101110^{-11} to 101210^{-12}
Bleach12.53×10133 \times 10^{-13}

Measuring pH

pH Indicators

IndicatorpH RangeColor ChangeAcid ColorBase Color
Methyl orange3.1-4.4Red → YellowRedYellow
Bromothymol blue6.0-7.6Yellow → BlueYellowBlue
Phenolphthalein8.2-10.0Colorless → PinkColorlessPink
Litmus5.0-8.0Red → BlueRedBlue

pH Measurement Devices

DeviceAccuracyRangePrinciple
pH paper±0.51-14Color change
pH meter±0.010-14Electrochemical
Universal indicator±1.01-14Multiple dyes

SPM Exam Tips

For pH calculations:

  • Always show the formula before plugging in numbers
  • Use proper scientific notation for [H⁺]
  • Remember the relationship pH + pOH = 14
  • Be careful with significant figures in log calculations

6.3 Strength of Acids and Alkalis

Strong Acids

Definition: Completely dissociate in aqueous solution HAH++A(100% dissociation)\text{HA} \rightarrow \text{H}^+ + \text{A}^- \quad(\text{100\% dissociation})

Common Strong Acids

AcidFormulaDissociationpH of 0.1 M Solution
Hydrochloric acidHClStrong1.0
Sulfuric acidH2SO4H_2SO_4Strong (first H+H^+)0.7
Nitric acidHNO3HNO_3Strong1.0
Perchloric acidHClO4HClO_4Strong1.0

Weak Acids

Definition: Partially dissociate in aqueous solution HAH++A<100% dissociation \text{HA} \rightleftharpoons \text{H}^+ + \text{A}^- \quad{\text{<100\% dissociation}}

Common Weak Acids

AcidFormulaDissociationKa at 25°CpH of 0.1 M Solution
Acetic acidCH3COOHCH_3COOHWeak1.8×1051.8 \times 10^{-5}2.87
Carbonic acidH2CO3H_2CO_3Weak4.3×1074.3 \times 10^{-7}3.68
Hydrofluoric acidHFWeak6.8×1046.8 \times 10^{-4}2.08
Phosphoric acidH3PO4H_3PO_4Weak7.5×1037.5 \times 10^{-3}1.61

Strong Bases

Definition: Completely dissociate in aqueous solution MOHM++OH(100% dissociation)\text{MOH} \rightarrow \text{M}^+ + \text{OH}^- \quad (\text{100\% dissociation})

Common Strong Bases

BaseFormulaDissociationpH of 0.1 M Solution
Sodium hydroxideNaOHStrong13.0
Potassium hydroxideKOHStrong13.0
Calcium hydroxideCa(OH)2Ca(OH)_2Strong12.4
Barium hydroxideBa(OH)2Ba(OH)_2Strong13.0

Weak Bases

Definition: Partially dissociate in aqueous solution B+H2OBH++OH(<100% dissociation)\text{B} + \text{H}_2\text{O} \rightleftharpoons \text{BH}^+ + \text{OH}^- \quad (\text{<100\% dissociation})

Common Weak Bases

BaseFormulaDissociationKb at 25°CpH of 0.1 M Solution
AmmoniaNH3NH_3Weak1.8×1051.8 \times 10^{-5}11.13
MethylamineCH3NH2CH_3NH_2Weak4.4×1044.4 \times 10^{-4}11.62
PyridineC5H5NC_5H_5NWeak1.7×1091.7 \times 10^{-9}8.63

Concentration vs. Strength

PropertyStrong AcidWeak Acid
DissociationCompletePartial
[H+][H^+] at 0.1 M0.1 M< 0.1 M
pH at 0.1 M1.0> 1.0
ConductivityHighLow
Reaction rateFastSlow
ExamplesHCl, H2SO4H_2SO_4CH3COOHCH_3COOH, H2CO3H_2CO_3

Acid Dissociation Constants (Ka)

Ka=[H+][A][HA]K_a = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]}

Acid Strength Order

AcidKaRelative Strength
HClVery largeStrongest
H2SO4H_2SO_4Very largeVery strong
HNO3HNO_3Very largeVery strong
HF6.8×1046.8 \times 10^{-4}Weak
H3PO4H_3PO_47.5×1037.5 \times 10^{-3}Weak
CH3COOHCH_3COOH1.8×1051.8 \times 10^{-5}Weaker
H2CO3H_2CO_34.3×1074.3 \times 10^{-7}Very weak

Did You Know?

The strength of an acid is independent of its concentration. Concentrated acetic acid (vinegar) is still a weak acid because it only partially dissociates, while dilute hydrochloric acid is still a strong acid because it completely dissociates.

6.4 Chemical Properties of Acids and Bases

General Properties of Acids

Physical Properties

PropertyDescriptionExample
TasteSourLemon juice, vinegar
FeelSlippery (when dilute)None (safely test with indicator)
pH< 7HCl: pH 1-2, CH3COOHCH_3COOH: pH 2-3
ConductivityGood (when in solution)HCl solution conducts electricity
ReactivityWith metals, carbonates, basesReacts with Zn, Na2CO3Na_2CO_3, NaOH

Chemical Properties

  1. Reaction with Metals Acid+MetalSalt+Hydrogen\text{Acid} + \text{Metal} \rightarrow \text{Salt} + \text{Hydrogen} 2HCl+ZnZnCl2+H22\text{HCl} + \text{Zn} \rightarrow \text{ZnCl}_2 + \text{H}_2

  2. Reaction with Carbonates Acid+CarbonateSalt+Carbon dioxide+Water\text{Acid} + \text{Carbonate} \rightarrow \text{Salt} + \text{Carbon dioxide} + \text{Water} 2HCl+CaCO3CaCl2+CO2+H2O2\text{HCl} + \text{CaCO}_3 \rightarrow \text{CaCl}_2 + \text{CO}_2 + \text{H}_2\text{O}

  3. Reaction with Bases (Neutralization) Acid+BaseSalt+Water\text{Acid} + \text{Base} \rightarrow \text{Salt} + \text{Water} HCl+NaOHNaCl+H2O\text{HCl} + \text{NaOH} \rightarrow \text{NaCl} + \text{H}_2\text{O}

  4. Reaction with Metal Oxides Acid+Metal oxideSalt+Water\text{Acid} + \text{Metal oxide} \rightarrow \text{Salt} + \text{Water} 2HCl+CuOCuCl2+H2O2\text{HCl} + \text{CuO} \rightarrow \text{CuCl}_2 + \text{H}_2\text{O}

General Properties of Bases

Physical Properties

PropertyDescriptionExample
TasteBitterBaking soda, soap
FeelSlipperySoap solution
pH> 7NaOH: pH 13-14, NH3NH_3: pH 11-12
ConductivityGood (when in solution)NaOH solution conducts electricity
ReactivityWith acids, ammonium salts, metalsReacts with HCl, NH4ClNH_4Cl, Al

Chemical Properties

  1. Reaction with Acids (Neutralization) Base+AcidSalt+Water\text{Base} + \text{Acid} \rightarrow \text{Salt} + \text{Water} NaOH+HClNaCl+H2O\text{NaOH} + \text{HCl} \rightarrow \text{NaCl} + \text{H}_2\text{O}

  2. Reaction with Ammonium Salts Base+Ammonium saltSalt+Ammonia+Water\text{Base} + \text{Ammonium salt} \rightarrow \text{Salt} + \text{Ammonia} + \text{Water} NaOH+NH4ClNaCl+NH3+H2O\text{NaOH} + \text{NH}_4\text{Cl} \rightarrow \text{NaCl} + \text{NH}_3 + \text{H}_2\text{O}

  3. Reaction with Metals Base+MetalSalt+Hydrogen\text{Base} + \text{Metal} \rightarrow \text{Salt} + \text{Hydrogen} 2NaOH+2Al+6H2O2NaAl(OH)4+3H22\text{NaOH} + 2\text{Al} + 6\text{H}_2\text{O} \rightarrow 2\text{NaAl(OH)}_4 + 3\text{H}_2

  4. Thermal Decomposition Metal hydroxideMetal oxide+Water\text{Metal hydroxide} \rightarrow \text{Metal oxide} + \text{Water} 2NaOHNa2O+H2O2\text{NaOH} \rightarrow \text{Na}_2\text{O} + \text{H}_2\text{O}

Acid-Base Theories

Arrhenius Theory

  • Acid: Substance that produces H+H^+ ions in aqueous solution
  • Base: Substance that produces OHOH^- ions in aqueous solution
  • Limitation: Only covers aqueous solutions

Brønsted-Lowry Theory

  • Acid: Proton (H+H^+) donor
  • Base: Proton (H+H^+) acceptor
  • Advantage: Covers non-aqueous solutions and can explain amphoteric behavior

Lewis Theory

  • Acid: Electron pair acceptor
  • Base: Electron pair donor
  • Advantage: Covers reactions without protons (e.g., BF3+NH3BF_3 + NH_3)

SPM Exam Tips

For acid-base reactions:

  • Memorize the general reaction patterns
  • Know the products of acid-metal, acid-carbonate, and base-ammonium reactions
  • Understand the different acid-base theories and their applications
  • Practice writing balanced equations for neutralization reactions

6.5 Concentration of Aqueous Solutions

Molarity

Definition: Number of moles of solute per liter of solution Molarity=moles of soluteliters of solution\text{Molarity} = \frac{\text{moles of solute}}{\text{liters of solution}}

Dilution Formula

M1V1=M2V2M_1V_1 = M_2V_2

Example: Dilute 100 mL of 2.0 M HCl to 0.5 M (2.0 M)(0.100 L)=(0.5 M)(V2)(2.0 \text{ M})(0.100 \text{ L}) = (0.5 \text{ M})(V_2) V2=0.4 L=400 mLV_2 = 0.4 \text{ L} = 400 \text{ mL}

Concentration Calculations

Example 1: Preparing 0.1 M HCl

Given concentrated HCl is 12 M Moles needed=0.1 M×0.1 L=0.01 mol\text{Moles needed} = 0.1 \text{ M} \times 0.1 \text{ L} = 0.01 \text{ mol} Volume of concentrated HCl=0.01 mol12 M=0.00083 L=0.83 mL\text{Volume of concentrated HCl} = \frac{0.01 \text{ mol}}{12 \text{ M}} = 0.00083 \text{ L} = 0.83 \text{ mL}

Example 2: Neutralization Reaction

HCl+NaOHNaCl+H2O\text{HCl} + \text{NaOH} \rightarrow \text{NaCl} + \text{H}_2\text{O} If 25.0 mL of 0.1 M HCl requires 20.0 mL of NaOH, find M of NaOH: (0.1 M)(25.0 mL)=MNaOH(20.0 mL)(0.1 \text{ M})(25.0 \text{ mL}) = M_{\text{NaOH}}(20.0 \text{ mL}) MNaOH=2.520.0=0.125 MM_{\text{NaOH}} = \frac{2.5}{20.0} = 0.125 \text{ M}


Did You Know?

The concentration of acids and bases can vary dramatically in nature. Stomach acid has a pH of about 1.5-3.5, while blood maintains a very precise pH of 7.35-7.45. Even small deviations from this range can be life-threatening.

6.6 Acid-Base Titration

Definition of Titration

Titration: Technique to determine the concentration of one solution by reacting it with a solution of known concentration.

Types of Titrations

TypeIndicatorExamples
Strong acid-Strong basePhenolphthalein, methyl orangeHCl vs NaOH
Strong acid-Weak baseMethyl orangeHCl vs NH3NH_3
Weak acid-Strong basePhenolphthaleinCH3COOHCH_3COOH vs NaOH
Weak acid-Weak baseNone (pH meter needed)CH3COOHCH_3COOH vs NH3NH_3

Titration Procedure

Equipment Needed

  • Burette, pipette, conical flask
  • Burette stand and clamp
  • Standard solutions
  • Appropriate indicator
  • White tile for color contrast

Step-by-Step Procedure

  1. Fill Burette: Fill burette with standard solution (known concentration)
  2. Pipette Sample: Pipette analyte solution into conical flask
  3. Add Indicator: Add 2-3 drops of appropriate indicator
  4. Titration: Slowly add standard solution from burette until color change
  5. Record Volume: Note volume used at endpoint
  6. Repeat: Perform multiple trials for accuracy

Indicator Selection

Titration TypeSuitable IndicatorColor Change
Strong acid-Strong basePhenolphthaleinColorless → Pink
Strong acid-Weak baseMethyl orangeRed → Yellow
Weak acid-Strong basePhenolphthaleinColorless → Pink

Titration Calculations

Example: Titration of HCl with NaOH

Given: 25.0 mL of unknown HCl requires 23.5 mL of 0.100 M NaOH Moles NaOH=(0.100 M)(0.0235 L)=0.00235 mol\text{Moles NaOH} = (0.100 \text{ M})(0.0235 \text{ L}) = 0.00235 \text{ mol} From balanced equation: HCl + NaOH → NaCl + H2O\text{From balanced equation: HCl + NaOH → NaCl + H}_2\text{O} Moles HCl=Moles NaOH=0.00235 mol\text{Moles HCl} = \text{Moles NaOH} = 0.00235 \text{ mol} Molarity HCl=0.00235 mol0.0250 L=0.094 M\text{Molarity HCl} = \frac{0.00235 \text{ mol}}{0.0250 \text{ L}} = 0.094 \text{ M}

Endpoint vs Equivalence Point

TermDefinitionImportance
EndpointPoint where indicator changes colorVisual detection
Equivalence PointPoint where moles acid = moles baseTheoretical completion
Titration ErrorDifference between endpoint and equivalence pointShould be minimal

Common Titrations in Laboratory

Acid-Base Titrations

ReactionIndicatorColor Change
HCl + NaOHPhenolphthaleinColorless → Pink
CH3COOHCH_3COOH + NaOHPhenolphthaleinColorless → Pink
H2SO4H_2SO_4 + NaOHBromothymol blueYellow → Blue

Oxidation-Reduction Titrations

ReactionIndicatorMethod
KMnO4KMnO_4 + Fe2+Fe^{2+}Self-indicator (pink → colorless)Permanganate titration
K2Cr2O7K_2Cr_2O_7 + Fe2+Fe^{2+}Diphenylamine sulfonateDichromate titration

SPM Exam Tips

For titration calculations:

  • Always write the balanced equation first
  • Use the mole ratio correctly
  • Remember the dilution formula M1V1M_1V_1 = M2V2M_2V_2
  • Practice with different types of titrations
  • Pay attention to significant figures

6.7 Salts, Crystals and Their Uses in Life

Salt Formation

Neutralization Reaction

Acid+BaseSalt+Water\text{Acid} + \text{Base} \rightarrow \text{Salt} + \text{Water}

AcidBaseSaltName
HClNaOHNaClSodium chloride
H2SO4H_2SO_4NaOHNa2SO4Na_2SO_4Sodium sulfate
HNO3HNO_3KOHKNO3KNO_3Potassium nitrate
H3PO4H_3PO_4Ca(OH)2Ca(OH)_2Ca3(PO4)2Ca_3(PO_4)_2Calcium phosphate

Double Displacement Reaction

Salt1+Salt2Salt3+Salt4\text{Salt}_1 + \text{Salt}_2 \rightarrow \text{Salt}_3 + \text{Salt}_4

Crystal Structures

Types of Crystals

TypeStructurePropertiesExamples
Ionic CrystalsLattice structureHard, high melting pointNaCl, CaCO3CaCO_3
Covalent CrystalsNetwork structureVery hard, high melting pointDiamond, SiO2SiO_2
Metallic CrystalsMetallic bondingMalleable, conductiveFe, Cu, Al
Molecular CrystalsMolecules held by forcesSoft, low melting pointIce, sugar

Common Crystals in Daily Life

CrystalFormulaUsesProperties
Sodium chlorideNaClFood seasoning, de-icingCubic crystals, soluble
Sugar (sucrose)C12H22O11C_{12}H_{22}O_{11}Sweetener, preservativeHexagonal crystals, soluble
Copper sulfateCuSO4CuSO_4Electroplating, fungicideBlue crystals, soluble
Calcium carbonateCaCO3CaCO_3Cement, antacidRhombohedral, insoluble
Sodium bicarbonateNaHCO3NaHCO_3Baking, fire extinguisherMonoclinic, soluble

Uses of Salts and Crystals

Food Industry

SaltUsesProperties
NaClSeasoning, preservativeEnhances flavor, prevents spoilage
NaHCO_3Baking, antacidLeavening agent, neutralizes acid
NaNO_2Curing meatPreservative, color retention
CaCO_3Calcium supplementSource of calcium

Industrial Applications

SaltUsesProperties
Na_2CO_3Glass manufacturing, detergentAlkaline, cleaning
CaSO_4Plaster of Paris, cementSets when hydrated
NH_4NO_3Fertilizer, explosivesHigh nitrogen content
CuSO_4Electroplating, fungicideBlue color, toxic

Medical and Pharmaceutical

SaltUsesProperties
NaClIV fluids, irrigationIsotonic, maintains osmotic balance
MgSO_4Epsom salts, laxativeMuscle relaxant, osmotic laxative
KClPotassium supplement, electrolyteReplaces potassium
CaCl_2Calcium supplement, de-icerSource of calcium

Did You Know?

Salt crystals are actually cube-shaped in their perfect form, but we often see them as irregular chunks. The cubic shape comes from the ionic bonds between sodium and chloride ions arranging themselves in a repeating three-dimensional pattern.

6.8 Qualitative Analysis

Purpose of Qualitative Analysis

Qualitative Analysis: Systematic identification of ions present in a substance.

Test for Cations

Group I Cations (Ag+Ag^+, Pb2+Pb^{2+}, Hg22+Hg_2^{2+})

IonTestObservation
Ag+Ag^+Add HClWhite precipitate (AgCl)
Pb2+Pb^{2+}Add HClWhite precipitate (PbCl2PbCl_2)
Hg22+Hg_2^{2+}Add HClWhite precipitate (Hg2Cl2Hg_2Cl_2)

Group II Cations (Cu2+Cu^{2+}, Fe2+Fe^{2+}, Fe3+Fe^{3+}, Al3+Al^{3+}, Zn2+Zn^{2+})

IonTestObservation
Cu2+Cu^{2+}Add NaOHBlue precipitate
Fe2+Fe^{2+}Add NaOHGreen precipitate
Fe3+Fe^{3+}Add NaOHRust-brown precipitate
Al3+Al^{3+}Add NaOHWhite gelatinous precipitate
Zn2+Zn^{2+}Add NaOHWhite precipitate (soluble in excess)

Group III Cations (Ca2+Ca^{2+}, Sr2+Sr^{2+}, Ba2+Ba^{2+})

IonTestObservation
Ca2+Ca^{2+}Add (NH4)2C2O4(NH_4)_2C_2O_4White precipitate
Sr2+Sr^{2+}Add (NH4)2SO4(NH_4)_2SO_4White precipitate
Ba2+Ba^{2+}Add K2CrO4K_2CrO_4Yellow precipitate

Group IV Cations (Mg2+Mg^{2+}, NH4+NH_4^{+})

IonTestObservation
Mg2+Mg^{2+}Add NaOH + magnesonBlue precipitate
NH4+NH_4^{+}Add NaOH + heatAmmonia gas (pungent smell)

Test for Anions

Carbonate (CO32CO_3^{2-})

CO32+2H+CO2+H2O\text{CO}_3^{2-} + 2\text{H}^+ \rightarrow \text{CO}_2 + \text{H}_2\text{O} Test: Add dilute acid → effervescence (CO2CO_2 turns limewater milky)

Sulfate (SO42SO_4^{2-})

SO42+Ba2+BaSO4\text{SO}_4^{2-} + \text{Ba}^{2+} \rightarrow \text{BaSO}_4 \downarrow Test: Add BaCl2BaCl_2 → white precipitate

Chloride (ClCl^-)

Cl+Ag+AgCl\text{Cl}^- + \text{Ag}^+ \rightarrow \text{AgCl} \downarrow Test: Add AgNO3AgNO_3 → white precipitate (soluble in NH3NH_3)

Nitrate (NO3NO_3^-)

Test: Brown ring test NO3+Fe2++4H+Fe3++NO+2H2O\text{NO}_3^- + \text{Fe}^{2+} + 4\text{H}^+ \rightarrow \text{Fe}^{3+} + \text{NO} + 2\text{H}_2\text{O} NO+FeSO4[Fe(NO)]SO4 (brown ring)\text{NO} + \text{FeSO}_4 \rightarrow \text{[Fe(NO)]SO}_4 \text{ (brown ring)}

Flame Tests

IonFlame Color
Li+Li^+Crimson red
Na+Na^+Golden yellow
K+K^+Lilac
Ca2+Ca^{2+}Brick red
Sr2+Sr^{2+}Crimson red
Ba2+Ba^{2+}Apple green
Cu2+Cu^{2+}Blue-green

Systematic Analysis Procedure

Step 1: Preliminary Tests

  • Physical appearance
  • Solubility in water
  • Odor
  • pH

Step 2: Confirmatory Tests

  • Test for specific ions using reagents
  • Observe color changes and precipitates

Step 3: Identification

  • Compare observations with known reactions
  • Confirm presence of ions

SPM Exam Tips

For qualitative analysis:

  • Memorize the characteristic tests for each ion
  • Learn the color changes and observations
  • Understand the systematic approach to analysis
  • Practice flame test colors
  • Know the solubility rules

Laboratory Practical Exercise: Acid-Base Titration

Objective

To determine the concentration of an unknown acid solution using titration.

Materials Needed

  • Burette, pipette, conical flask
  • Standard NaOH solution (0.100 M)
  • Unknown HCl solution
  • Phenolphthalein indicator
  • Burette stand
  • White tile

Procedure

  1. Rinse burette with standard NaOH solution
  2. Fill burette with NaOH solution
  3. Pipette 25.0 mL of unknown HCl into conical flask
  4. Add 2-3 drops of phenolphthalein
  5. Titrate until colorless → pink endpoint
  6. Record volume used
  7. Repeat for accuracy

Calculations

MHCl=MNaOH×VNaOHVHClM_{\text{HCl}} = \frac{M_{\text{NaOH}} \times V_{\text{NaOH}}}{V_{\text{HCl}}}

Expected Outcomes

  • Skill in titration technique
  • Accuracy in concentration calculations
  • Understanding of acid-base stoichiometry

Summary

This chapter has covered the fundamental concepts of acids, bases, and salts:

  1. pH and Acidity/Alkalinity: Understanding pH scale and water's role
  2. Acid-Base Theories: Arrhenius, Brønsted-Lowry, and Lewis theories
  3. Strength of Acids/Bases: Strong vs weak acids and bases
  4. Chemical Properties: Reactions with metals, carbonates, and each other
  5. Concentration: Molarity and dilution calculations
  6. Titration: Technique for determining unknown concentrations
  7. Salts and Crystals: Formation, properties, and uses
  8. Qualitative Analysis: Systematic identification of ions

Mastering these concepts is essential for understanding chemical reactions and their applications in various fields.


Practice Tips for SPM Students

  • Practice pH calculations regularly
  • Work through titration problems step by step
  • Memorize qualitative tests for common ions
  • Create flashcards for acid-base reactions
  • Review laboratory applications and safety